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a b s t r a c t

The diffraction of sound by a radially laminated isotropic thermoelastic cylindrical shell is considered. The
system of equations for small perturbations of a hollow thermoelastic cylinder is reduced to a system of
ordinary differential equations, the boundary-value problem for which is solved by the spline-collocation
method. Expressions are obtained describing the wave field outside the cylindrical layer. Results of cal-
culations of polar radiation patterns of the amplitude of the scattered acoustic wave in the far zone are
presented.

© 2009 Elsevier Ltd. All rights reserved.

The problem of the diffraction of an acoustic wave by an isotropic non-uniform solid cylindrical body was solved in Ref. 1. The scattering
of a plane monochromatic acoustic wave by a transversely isotropic non-uniform cylindrical layer was investigated in Ref. 2. A solution of
the problem of the diffraction of plane acoustic waves by a non-uniform hollow cylinder was obtained in the general case of cylindrical
anisotropy in Ref. 3. In all these papers thermal processes in the elastic non-uniform bodies were ignored.

1. Formulation of the problem

Consider an infinite isotropic non-uniform thermoelastic hollow circular cylinder with outer radius r1 and inner radius r2, having a
constant temperature T0 in the unperturbed state. There are no heat sources in the cylindrical layer. A cylindrical system of coordinates
r, �, z is chosen in such a way that the z coordinate axis is the axis of rotation of the cylinder. The moduli of elasticity, the temperature
coefficient of linear expansion and the thermal conductivity of the material of the layer are described by differentiable functions of the r
coordinate. The density of the layer material and its volume heat capacity are described by continuous functions of the r coordinate. We
will assume that the fluid surrounding the cylindrical shell and the fluid in the cavity are inviscid, heat conducting and uniform and have
a temperature T0, densities �1 and �2 and velocities of sound c1 and c2 respectively.

Suppose a plane acoustic wave, the velocity potential of which is equal to

is incident obliquely on the thermoelastic cylinder, where Ai is the amplitude of the incident wave, k11 is the wave vector, r is the radius
vector and � is the angular frequency. The time factor exp(−i�t) will henceforth be omitted. Without loss of generality we will assume
that the vector k11 lies in the � = 0,� plane.

We will represent the potential of the incident wave in the cylindrical system of coordinates in the form4

(1.1)

where kz
11 = k11 cos �0 and kr

11 = k11 sin �0 are the projections of the wave vector k11 on to the z and r axes respectively, k11 is the wave
number of the acoustic waves in the surrounding fluid, �0 is the angle between the vector k11 and the z axis, �m = Ai(2 − �0m)im, �0m is the
Kronecker delta, and Jm(x) is the cylindrical Bessel function of order m
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We will determine the waves reflected from the cylinder and excited in the cavity and we will also obtain the displacement field and
the temperature in the cylindrical thermoelastic layer.

2. The wave-field equations

Small perturbations of the isotropic thermoelastic cylindrical layer are described by the general equations of motion of a continuous
medium5 in a cylindrical system of coordinates

(2.1)

and by the heat flux equation6

(2.2)

where 	
k are the components of the stress tensor in cylindrical coordinates, which are related to the components of the strain tensor �
k
and the change in temperature T of the unperturbed layer by the Duhamel–Neumann relations6

(2.3)

Here ur, u�, uz are the components of the displacement vector u along the coordinate axes, � = �(r) is the density of the layer material,
� = �(r) and  = (r) are the moduli of elasticity of the layer material, � = �(r) = 3�TK, �T = �T(r) is the coefficient of linear expansion of
the layer material, K = � + (2/3) is the isothermal modulus of volume expansion, �T = �T(r) and cv = cv(r) are the thermal conductivity and
volume heat capacity of the layer material respectively, and � = T0�. A prime denotes a derivative with respect to r.

Since the cylinder material is only non-uniform in the radial direction, the dependence of the components of the displacement vector
and of the change in temperature on the z coordinate, according to Snell’s law,7 has the form exp(ikz

11z). Hence the functions ur, u�, uz, T
will be sought in the form

(2.4)

In the case considered ur, uz and T are even functions of the coordinate �, and u� is an odd function of �. The functions U�(� = 1, 2, 3, 4)
can be represented by the following Fourier series

(2.5)

We will introduce the following dimensionless quantities

Here H = r1 − r2 is the thickness of the cylindrical layer and �0, 0, �0, �0
T , �0

T , c0
� are characteristic quantities.
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Substituting expressions (2.3)–(2.5) into Eqs (2.1) and (2.2) and using the conditions for the functions cosm� and sinm� to be orthogonal,
we obtain a system of second-order linear ordinary differential equations in the functions U∗

�m(� = 1, 2, 3, 4) for each value of m = 0, 1, 2,
. . ..

(2.6)

where

The prime denotes a derivative with respect to r*.
We will represent the velocity of the fluid particles on the outside (j = 1) and in the cavity (j = 2) of the cylindrical shell in the form

The acoustic wave velocity potential �j and the thermal wave velocity potential �j are the solutions of the following equations

where �1 = �i + �s, �s is the velocity potential of the reflected acoustic wave, and kj1 and kj2 are the wave numbers at the acoustic and
thermal waves respectively. In this case
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where

�j is the ratio of the specific heat capacities of the fluid at constant pressure and volume, and �j is the thermal diffusivity of the fluid.
The reflected waves must satisfy the radiation conditions at infinity, while the waves in the cavity must satisfy the boundedness condition.

Hence, the functions �s, �2, �1, �2 will be sought in the form

(2.7)

where kz
jl

and kr
jl
(j, l = 1, 2) are the projections of the wave vector kjl onto the z and r axes respectively, (kz

jl
)2 + (kr

jl
)2 = kz

jl
and Hm(x) is the

cylindrical Hankel function of the first kind of order m. By Snell’s law kz
11 = kz

12 = kz
21 = kz

22.
The coefficients Ajm, Bjm (j = 1,2) are to be determined from the boundary conditions, which consist of the equality of the normal velocities

of the particles of the thermoelastic medium and of the fluid on the outer and inner surfaces of the cylindrical layer, the absence of shear
stresses on these surfaces, the equality on them of the normal stress and the acoustic pressure, and the continuity of the acoustic temperature
and the heat flux on the layer surfaces:

(2.8)

Here

where vjr are the normal components of the velocities of the fluid particles, pj are the acoustic pressures, Tj are the acoustic temperatures,
and �j and �j are the coefficient of thermal expansion and the conductivities on the outside (j = 1) and in the cavity (j = 2) of the cylindrical
shell, respectively.

Substituting expressions (1.1), (2.3), (2.4), (2.5) and (27) into boundary conditions (2.8) and using the conditions for the functions cosm�
and sinm� to be orthogonal, for each value of index m = 0, 1, 2, . . . we obtain a system of twelve equations, from which we find expressions
for the coefficients Ajm and Bjm (j = 1, 2):

(2.9)

and eight conditions for finding a particular solution of system of differential equations (2.6)

(2.10)

where

Here
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It follows from system (2.9) that the coefficients Ajm and Bjm can only be calculated after determining the values of the functions U∗
1m(r∗)

and U∗
4m(r∗) on the surfaces of the cylindrical shell.

3. Solution of the boundary-value problem by the spline-collocation method

To find the functions U∗
1m(r∗), U∗

4m(r∗) we need to solve boundary-value problem (2.6), (2.10). We will obtain the solution of this problem
by the spline-collocation method.8 In the section r∗

2, r∗
1 we introduce a uniform grid r∗

2 = x0 < x1 < . . . xN = r∗
1 with pitch h. We will seek

an approximate solution of the boundary-value problem in the form of cubic splines S�m(r*) (� = 1,2,3,4) of defect 1 with nodes on the grid.
Here S�m(r*) are spline-functions, which approximate the functions U∗

�m(r∗) respectively. We will represent the cubic splines in the form
of an expansion in a basis of normalized cubic B-splines8

(3.1)

where bk
�m are the coefficients of the expansion, to be determined, and Vk(r*) is the basis spline-function, defined in the interval-carrier

with middle node xk. In order that all the basis functions in (3.1) should be defined, the grid must be supplemented by the nodes

We will require that the splines S�m(r*) should satisfy system (2.6) and boundary conditions (2.10) at collocation nodes, which coincide
with the nodes of the grid. Using expressions for the nodal values of the B-spline and its derivatives,8 we obtain a system of linear algebraic
equations in the unknown coefficients of the expansion

(3.2)

where SNm is a vector, consisting of four components, and P0m, Qkm and RNm are 4 × 12 matrices.
Solving system (3.2), consisting of 4N + 12 equations in 4N + 12 unknown coefficients, and substituting the values obtained into expression

(3.1), we obtain an approximate solution of the boundary-value problem.
Determining the coefficients Ajm and Bjm (j = 1,2) from expressions (2.9), we obtain a description of the wave fields on the outside and

in the cavity of the cylindrical shell from formulae (2.7).
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4. Results of calculations

We will consider the far zone of the acoustic field. Using the asymptotic representation of the cylindrical Hankel functions for large
values of the argument, we obtain the following expression for the potential of the scattered acoustic wave

where

Using the solution of the problem obtained we calculated the angular dependences of the amplitude (|F(�)|) of the scattered acoustic wave
for shells situated in water with the following values of the physical parameters

We considered the case of the incidence of a plane acoustic wave of unit amplitude along the direction of the normal to the generatrix of
the cylinder for a ratio of the outer radius of the cylindrical layer to the inner radius r2, equal to two. The types of material of the shells
were defined by the physical-mechanical characteristics shown in Table 1.

Material of type A is similar in its physical-mechanical characteristics to metals (aluminium), while material of type B is similar to
polymers (polyvinyl butyral).

Calculations were carried out both for uniform materials and for materials, the dimensionless density and dimensionless modulus of
elasticity of which varied simultaneously over the thickness of the cylindrical layer in accordance with the law

The factor a is chosen so that the mean value of the function f(r*) over the thickness of the layer was equal to unity.
To estimate the effect of the thermoelasticity of the material of the cylindrical shells on the scattering of the sound, calculations were

also carried out for elastic shells in the case of an isothermal process.
In Fig. 1 we show, for material of type A, polar directional patterns of the amplitude of the scattered acoustic wave for wave dimensions

|k11|r1 = 3 and |k11|r1 = 5 of the cylindrical shell. In view of the symmetry of the scattered acoustic field the diagrams were constructed
for a polar angle in the range 0◦ ≤ � ≤ 180◦. Here and henceforth continuous curves correspond to a uniform elastic material, dashed
curves correspond to a uniform thermoelastic material, dash-dot curves correspond to a non-uniform elastic material, and dotted curves
correspond to a non-uniform thermoelastic material. The direction of propagation of the incident plane wave is shown by the arrow. It
follows from the graphs that when |k11|r1 = 3 the thermoelasticity of the shell material has no effect on the scattering of the sound. The
effect of non-uniformity of the material is weak and gives rise to only a small reduction in the value of the sidelobes of the pattern around
their maxima. When the wave dimension of the shell is increased (|k11|r1 = 5) the effect of the thermoelasticity becomes somewhat more
noticeable. The presence of non-uniformity in the cylindrical layer for the same frequency leads to deformation of the form of the directional
pattern. The size of the sidelobes in the illuminated and transition zones is changed considerably and, moreover, the lobe in the direction
� = 180◦ disappears.

In Fig. 2 we show polar radiation patterns of the amplitude of the scattered acoustic wave for cylindrical shells made of material of
type B, for the same values of |k11|r1 as in Fig. 1. An analysis of this patterns shows that, unlike the thermoelasticity of the material of
type A, the thermoelasticity of type B material has a much greater effect on |F(�)|. Thus, in the neighbourhood of � = 0◦ for |k11|r1 = 3 and
in the illuminated zone for |k11|r1 = 5 the thermoelasticity of type B material leads to a considerable increase in |F(�)|. If the variability of
the density and the modulus of elasticity of the type B material is taken into account, the shape of the polar radiation pattern changes,
which is most noticeable when |k11|r1 = 3, when the maximum value in the lobe for � = 0◦ is almost doubled and a new large lobe occurs in
the region of � = 70◦. When |k11|r1 = 5 the radiation pattern undergoes the greatest change in the illuminated\one where one lobe appears
instead of two. The radiation pattern for |k11|r1 = 5 shows that non-uniformity of the material of the scatterer may change the effect of the
thermoelasticity on the scattering amplitude of the sound. For � = 0◦ in a uniform material, thermoelasticity leads to a reduction in the
amplitude, while in a non-uniform material it leads to an increase.

Hence an analysis of the results of numerical calculations shows that the thermoelasticity of the material of the cylindrical layer, like
its non-uniformity, has a considerable effect on the scattering of sound, and the extent of this effect depends very much on the type of
material.

Table 1

Type of material �0, N/m2 0, N/m2 �0, kg/m3 c0
� , J/(m3·K) �0

T
, 1/K �0

T , W/(m·K)

A 5.6 · 1010 2.6 · 1010 2700 2.3 · 106 25.5 · 10−6 236
B 3.9 · 109 9.8 · 108 1700 1.2 · 106 2.3 · 10−4 0.2
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Fig. 1.

Fig. 2.
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